IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)

Vous êtes nouveau sur Developpez.com ? Créez votre compte ou connectez-vous afin de pouvoir participer !

Vous devez avoir un compte Developpez.com et être connecté pour pouvoir participer aux discussions.

Vous n'avez pas encore de compte Developpez.com ? Créez-en un en quelques instants, c'est entièrement gratuit !

Si vous disposez déjà d'un compte et qu'il est bien activé, connectez-vous à l'aide du formulaire ci-dessous.

Identifiez-vous
Identifiant
Mot de passe
Mot de passe oublié ?
Créer un compte

L'inscription est gratuite et ne vous prendra que quelques instants !

Je m'inscris !

NVIDIA annonce son architecture Pascal et CUDA 8
Les opérations d'apprentissage de réseaux neuronaux accélérées d'un facteur douze

Le , par dourouc05

282PARTAGES

5  0 
NVIDIA en parle depuis un certain temps et dégaine, peu après AMD, sa nouvelle génération de processeurs graphiques, dénommée Pascal, un nom qui fait référence à Blaise Pascal, mathématicien et physicien français du XVIIe siècle. Les chiffres bruts donnent déjà le tournis : un tel GPU est composé de dix-huit milliards de transistors (huit milliards pour la génération précédente, Maxwell).

Sur la technique, ce GPU (nommé GP100) est le premier gravé en 16 nm, avec la technologie FinFET+ de TSMC, les précédents l’étaient en 28 nm. Pour un processus aussi récent, la puce est énorme : 610 mm², à comparer au 600 mm² de Maxwell sur un processus bien maîtrisé. Cette surface est utilisée pour les 3840 cœurs de calcul (3072 pour Maxwell), ayant accès à un total de 14 Mo de mémoire cache (6 Mo pour Maxwell). Les cœurs ont aussi augmenté en fréquence : 1,5 GHz au lieu de 1,1 pour Maxwell. Au niveau de la mémoire principale, la technologie HBM2 est utilisée au lieu de la mémoire traditionnelle GDDR5. Une puce Pascal dispose de seize gigaoctets de mémoire (contre douze, il n’y a pas si longtemps, chez Maxwell, maintenant vingt-quatre).

NVIDIA peut donc en profiter pour intégrer bon nombre de nouvelles fonctionnalités, tournées vers le segment HPC, comme sa connectique NVLink. L’une des fonctionnalités très utiles pour monter en performance concerne les nombres à virgule flottante : contrairement à Maxwell, les unités de calcul de Pascal traitent nativement des nombres sur soixante-quatre bits et seize bits  ; ainsi, une telle puce peut monter jusque vingt et un mille milliards d’opérations par seconde (2  TFlops) en seize bits, cinq mille milliards en soixante-quatre bits (avec un facteur d’à peu près quatre entre les deux : les unités sur soixante-quatre bits sont grosso modo composées de quatre unités sur seize bits).

Toujours dans le HPC, la mémoire unifiée, entre la mémoire principale de l’ordinateur et celle du processeur graphique, a aussi vu quelques améliorations. Elles se comptent au nombre de deux. Tout d’abord, l’espace d’adressage a été considérablement élargi, ce qui permet d’adresser toute la mémoire centrale et celle du GPU (et non seulement un espace équivalent à la mémoire du GPU). Ensuite, les GPU Pascal gèrent les défauts de page : si un noyau de calcul tente d’accéder à une page mémoire qui n’est pas encore chargée sur le GPU, elle le sera à ce moment-là, elle ne doit plus être copiée dès le lancement des calculs sur le GPU.



L’apprentissage profond, le cheval de bataille de NVIDIA

Toutes ces avancées sont jusque maintenant principalement prévues pour le marché du HPC, plus particulièrement de l’apprentissage de réseaux neuronaux profonds, à l’origine de miracles récents dans le domaine de l’intelligence artificielle.

NVIDIA avance un facteur d’accélération de douze dans un cas d’apprentissage d’un réseau neuronal avec sa nouvelle architecture par rapport à ses meilleurs résultats l’année dernière. Ce facteur est énorme en seulement une année, mais il faut remarquer que la comparaison proposée n’est pas toujours équitable : les nouveaux tests utilisent deux fois plus de GPU que l’année dernière, de nouvelles fonctionnalités ont fait leur apparition sur les GPU spécifiquement pour accélérer ce genre de calculs (les nombres à virgule flottante sur seize bits). Il n’empêche, le résultat reste impressionnant.



Ces avancées réunissent cinq « miracles », selon la terminologie de Jen-Hsun Huang :

  • la nouvelle architecture Pascal ;
  • la technologie de gravure de puces de TSMC ;
  • la nouvelle génération de puces mémoire empilées (HBM2) ;
  • la technologie d’interconnexion entre GPU NVLink ;
  • des améliorations algorithmiques pour tirer parti des progrès précédents.






NVIDIA DGX-1, un supercalculateur dans une boîte


Les tests de performance ont été effectués sur une machine assemblée par NVIDIA, dénommée DGX-1, un monstre de puissance. Elle couple deux processeurs Intel Xeon E5-2698 v3 et huit processeurs NVIDIA Pascal avec 512 Go de mémoire vive et 1,92 To de stockage en SSD. Globalement, la machine peut fournir 170 TFlops pour la modique somme de 129 000 $. NVIDIA la résume comme deux cent cinquante serveurs rassemblés dans un boîtier. Elle est d’ores et déjà en vente, mais les livraisons devraient débuter en juin. Des bibliothèques existantes ont été adaptées pour cette machine pour en tirer le meilleur parti, comme TensorFlow de Google



CUDA 8 et autres avancées logicielles

Pascal vient avec des améliorations matérielles accessibles par CUDA  8, la nouvelle version de l’API de calcul sur GPU de NVIDIA. Par exemple, les opérations atomiques en mémoire, utiles pour les opérations en parallèle sur une même case mémoire sans risque de corruption, gèrent plus d’opérations sur les entiers (en parallèle avec une implémentation matérielle plus complète). Les développeurs peuvent exploiter une structure d’interconnexion NVLink explicitement depuis CUDA.

Le profilage d’applications est encore amélioré, notamment au niveau de la répartition de la charge entre le CPU et le GPU, pour déterminer les parties où l’optimisation serait la plus bénéfique globalement. Pour ce faire, le profileur visuel montre maintenant les dépendances entre les noyaux de calcul du GPU et les appels à l’API CUDA, afin de faciliter la recherche d’un chemin critique d’exécution.



De nouvelles bibliothèques font également leur apparition au sein de l’écosystème, comme nvGRAPH pour l’analyse de graphes : la planification du chemin d’un robot dans un graphe énorme (comme une voiture dans le réseau routier), l’analyse de grands jeux de données (réseaux sociaux, génomique, etc.). NVIDIA IndeX, une bibliothèque de visualisation de très grands jeux de données (répartis sur plusieurs GPU), est maintenant disponible comme extension à ParaView. cuDNN arrive en version 5, avec d’importantes améliorations de performance.

Sources : Pascal Architecture (images d’illustration), Nvidia Pascal Architecture & GP100 Specs Detailed – Faster CUDA Cores, Higher Thread Throughput, Smarter Scheduler & More, NVIDIA DGX-1 Pascal Based Supercomputer Announced – Features 8 Tesla P100 GPUs With 170 TFLOPs Compute, NVIDIA GTC 2016 Keynote Live Blog (transparents NVIDIA), Inside Pascal: NVIDIA’s Newest Computing Platform, CUDA 8 Features Revealed.

Et vous ?

Qu'en pensez-vous ?

Ce contenu a été publié dans NVIDIA CUDA par dourouc05.

Une erreur dans cette actualité ? Signalez-nous-la !